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PREFACE

Why This Book? Why Now?

This book is about the past, present, and future of our attempt to 

understand and create intelligence. This matters, not because AI is 

rapidly becoming a pervasive aspect of the present but because it is 

the dominant technology of the future. The world’s great powers are 

 waking up to this fact, and the world’s largest corporations have known 

it for some time. We cannot predict exactly how the technology will 

develop or on what timeline. Nevertheless, we must plan for the 

possibility that machines will far exceed the human capacity for 

 decision making in the real world. What then?

Everything civilization has to offer is the product of our intelli-

gence; gaining access to considerably greater intelligence would be the 

biggest event in human history. The purpose of the book is to explain 

why it might be the last event in human history and how to make sure 

that it is not.
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x PREFACE

Overview of the Book

The book has three parts. The first part (Chapters 1 to 3) explores the 

idea of intelligence in humans and in machines. The material requires 

no technical background, but for those who are interested, it is supple-

mented by four appendices that explain some of the core concepts 

underlying  present-  day AI systems. The second part (Chapters 4 to 6) 

discusses some problems arising from imbuing machines with intel-

ligence. I focus in particular on the problem of control: retaining 

 absolute power over machines that are more powerful than us. The 

third part (Chapters 7 to 10) suggests a new way to think about AI 

and to ensure that machines remain beneficial to humans, forever. 

The book is intended for a general audience but will, I hope, be of 

value in convincing specialists in artificial intelligence to rethink their 

fundamental assumptions.
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1

IF WE SUCCEED

A long time ago, my parents lived in Birmingham, England, in a 

house near the university. They decided to move out of the 

city and sold the house to David Lodge, a professor of English 

literature. Lodge was by that time already a  well-  known novelist. I 

never met him, but I decided to read some of his books: Changing 
Places and Small World. Among the principal characters were fictional 

academics moving from a fictional version of Birmingham to a fic-

tional version of Berkeley, California. As I was an actual academic 

from the actual Birmingham who had just moved to the actual Berke-

ley, it seemed that someone in the Department of Coincidences was 

telling me to pay attention.

One particular scene from Small World struck me: The protago-

nist, an aspiring literary theorist, attends a major international confer-

ence and asks a panel of leading figures, “What follows if everyone 

agrees with you?” The question causes consternation, because the 

panelists had been more concerned with intellectual combat than as-

certaining truth or attaining understanding. It occurred to me then 

that an analogous question could be asked of the leading figures in AI: 

“What if you succeed?” The field’s goal had always been to create 
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 I F  WE SUCCEED 3

occur. Perhaps most important, AI, unlike aliens, is something over 

which we have some say.

Then I asked the audience to imagine what would happen if we 

received notice from a superior alien civilization that they would ar-

rive on Earth in thirty to fifty years. The word pandemonium doesn’t 

begin to describe it. Yet our response to the anticipated arrival of su-

perintelligent AI has  been . . . well, underwhelming begins to describe 

it. (In a later talk, I illustrated this in the form of the email exchange 

shown in figure 1.) Finally, I explained the significance of superintelli-

gent AI as follows: “Success would be the biggest event in human 

 history . . . and perhaps the last event in human history.”

From: Superior Alien Civilization <sac12@sirius.canismajor.u>

To: humanity@UN.org

Subject: Contact

Be warned: we shall arrive in  30–  50 years

From: humanity@UN.org

To: Superior Alien Civilization <sac12@sirius.canismajor.u>

Subject: Out of offi ce: Re: Contact

Humanity is currently out of the offi ce. We will respond to your 
message when we return. 

FIGURE 1: Probably not the email exchange that would follow the first contact 
by a superior alien civilization. 

A few months later, in April 2014, I was at a conference in Iceland 

and got a call from National Public Radio asking if they could inter-

view me about the movie Transcendence, which had just been released 

in the United States. Although I had read the plot summaries and re-

views, I hadn’t seen it because I was living in Paris at the time, and it 

would not be released there until June. It so happened, however, that 

2 HUMAN COMPATIBLE

 human-  level or superhuman AI, but there was little or no consider-

ation of what would happen if we did.

A few years later, Peter Norvig and I began work on a new AI text-

book, whose first edition appeared in 1995.1 The book’s final section 

is titled “What If We Do Succeed?” The section points to the possibil-

ity of good and bad outcomes but reaches no firm conclusions. By the 

time of the third edition in 2010, many people had finally begun to 

consider the possibility that superhuman AI might not be a good 

 thing—  but these people were mostly outsiders rather than main-

stream AI researchers. By 2013, I became convinced that the issue not 

only belonged in the mainstream but was possibly the most important 

question facing humanity.

In November 2013, I gave a talk at the Dulwich Picture Gallery, a 

venerable art museum in south London. The audience consisted 

mostly of retired  people—  nonscientists with a general interest in in-

tellectual  matters—  so I had to give a completely nontechnical talk. It 

seemed an appropriate venue to try out my ideas in public for the first 

time. After explaining what AI was about, I nominated five candi-

dates for “biggest event in the future of humanity”:

1. We all die (asteroid impact, climate catastrophe, pandemic, etc.).

2. We all live forever (medical solution to aging).

3. We invent  faster-  than-  light travel and conquer the universe.

4. We are visited by a superior alien civilization.

5. We invent superintelligent AI.

I suggested that the fifth candidate, superintelligent AI, would be 

the winner, because it would help us avoid physical catastrophes and 

achieve eternal life and  faster-  than-  light travel, if those were indeed 

possible. It would represent a huge  leap—  a  discontinuity—  in our civ-

ilization. The arrival of superintelligent AI is in many ways analogous 

to the arrival of a superior alien civilization but much more likely to 
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 I F  WE SUCCEED 5

that a significant advance can be made in one or more of these 

problems if a carefully selected group of scientists work on it 

 together for a summer.

Needless to say, it took much longer than a summer: we are still working 

on all these problems.

In the first decade or so after the Dartmouth meeting, AI had sev-

eral major successes, including Alan Robinson’s algorithm for  general- 

 purpose logical reasoning2 and Arthur Samuel’s  checker-  playing 

program, which taught itself to beat its creator.3 The first AI bubble 

burst in the late 1960s, when early efforts at machine learning and 

machine translation failed to live up to expectations. A report com-

missioned by the UK government in 1973 concluded, “In no part of 

the field have the discoveries made so far produced the major impact 

that was then promised.” 4 In other words, the machines just weren’t 

smart enough.

My  eleven-  year-  old self was, fortunately, unaware of this report. 

Two years later, when I was given a Sinclair Cambridge Programmable 

calculator, I just wanted to make it intelligent. With a maximum pro-

gram size of  thirty-  six keystrokes, however, the Sinclair was not quite 

big enough for  human-  level AI. Undeterred, I gained access to the gi-

ant CDC 6600 supercomputer5 at Imperial College London and wrote 

a chess  program—  a stack of punched cards two feet high. It wasn’t 

very good, but it didn’t matter. I knew what I wanted to do.

By the  mid-  1980s, I had become a professor at Berkeley, and AI 

was experiencing a huge revival thanks to the commercial potential of 

so- called expert systems. The second AI bubble burst when these sys-

tems proved to be inadequate for many of the tasks to which they 

were applied. Again, the machines just weren’t smart enough. An AI 

winter ensued. My own AI course at Berkeley, currently bursting with 

over nine hundred students, had just  twenty-  five students in 1990.

The AI community learned its lesson: smarter, obviously, was bet-

ter, but we would have to do our homework to make that happen. The 

4 HUMAN COMPATIBLE

I had just added a detour to Boston on the way home from Iceland, so 

that I could participate in a Defense Department meeting. So, after 

arriving at Boston’s Logan Airport, I took a taxi to the nearest theater 

showing the movie. I sat in the second row and watched as a Berkeley 

AI professor, played by Johnny Depp, was gunned down by anti- AI 

activists worried about, yes, superintelligent AI. Involuntarily, I shrank 

down in my seat. (Another call from the Department of Coinci-

dences?) Before Johnny Depp’s character dies, his mind is uploaded to 

a quantum supercomputer and quickly outruns human capabilities, 

threatening to take over the world.

On April 19, 2014, a review of Transcendence, co- authored with 

physicists Max Tegmark, Frank Wilczek, and Stephen Hawking, ap-

peared in the Huffington Post. It included the sentence from my Dul-

wich talk about the biggest event in human history. From then on, I 

would be publicly committed to the view that my own field of re-

search posed a potential risk to my own species.

How Did We Get Here?

The roots of AI stretch far back into antiquity, but its “official” begin-

ning was in 1956. Two young mathematicians, John McCarthy and 

Marvin Minsky, had persuaded Claude Shannon, already famous as the 

inventor of information theory, and Nathaniel Rochester, the designer 

of IBM’s first commercial computer, to join them in organizing a sum-

mer program at Dartmouth College. The goal was stated as follows:

The study is to proceed on the basis of the conjecture that every 

aspect of learning or any other feature of intelligence can in prin-

ciple be so precisely described that a machine can be made to sim-

ulate it. An attempt will be made to find how to make machines 

use language, form abstractions and concepts, solve kinds of prob-

lems now reserved for humans, and improve themselves. We think 
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ning was in 1956. Two young mathematicians, John McCarthy and 

Marvin Minsky, had persuaded Claude Shannon, already famous as the 

inventor of information theory, and Nathaniel Rochester, the designer 

of IBM’s first commercial computer, to join them in organizing a sum-

mer program at Dartmouth College. The goal was stated as follows:

The study is to proceed on the basis of the conjecture that every 
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that a significant advance can be made in one or more of these 

problems if a carefully selected group of scientists work on it 

 together for a summer.

Needless to say, it took much longer than a summer: we are still working 

on all these problems.

In the first decade or so after the Dartmouth meeting, AI had sev-

eral major successes, including Alan Robinson’s algorithm for  general- 

 purpose logical reasoning2 and Arthur Samuel’s  checker-  playing 

program, which taught itself to beat its creator.3 The first AI bubble 

burst in the late 1960s, when early efforts at machine learning and 

machine translation failed to live up to expectations. A report com-

missioned by the UK government in 1973 concluded, “In no part of 

the field have the discoveries made so far produced the major impact 

that was then promised.” 4 In other words, the machines just weren’t 
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My  eleven-  year-  old self was, fortunately, unaware of this report. 
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gram size of  thirty-  six keystrokes, however, the Sinclair was not quite 

big enough for  human-  level AI. Undeterred, I gained access to the gi-

ant CDC 6600 supercomputer5 at Imperial College London and wrote 

a chess  program—  a stack of punched cards two feet high. It wasn’t 

very good, but it didn’t matter. I knew what I wanted to do.

By the  mid-  1980s, I had become a professor at Berkeley, and AI 

was experiencing a huge revival thanks to the commercial potential of 

so- called expert systems. The second AI bubble burst when these sys-

tems proved to be inadequate for many of the tasks to which they 

were applied. Again, the machines just weren’t smart enough. An AI 

winter ensued. My own AI course at Berkeley, currently bursting with 

over nine hundred students, had just  twenty-  five students in 1990.

The AI community learned its lesson: smarter, obviously, was bet-

ter, but we would have to do our homework to make that happen. The 
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Scientific breakthroughs are notoriously hard to predict. To get a 

sense of just how hard, we can look back at the history of another field 

with  civilization-  ending potential: nuclear physics.

In the early years of the twentieth century, perhaps no nuclear 

physicist was more distinguished than Ernest Rutherford, the discov-

erer of the proton and the “man who split the atom” (figure 2[a]). Like 

his colleagues, Rutherford had long been aware that atomic nuclei 

stored immense amounts of energy; yet the prevailing view was that 

tapping this source of energy was impossible.

On September 11, 1933, the British Association for the Advance-

ment of Science held its annual meeting in Leicester. Lord Rutherford 

addressed the evening session. As he had done several times before, he 

poured cold water on the prospects for atomic energy: “Anyone who 

looks for a source of power in the transformation of the atoms is 

talking moonshine.” Rutherford’s speech was reported in the Times of 

London the next morning (figure 2[b]).

Leo Szilard (figure 2[c]), a Hungarian physicist who had recently 

fled from Nazi Germany, was staying at the Imperial Hotel on Russell 

 (a)  (b) (c)

FIGURE 2: (a) Lord Rutherford, nuclear physicist. (b) Excerpts from a report in 
the Times of September 12, 1933, concerning a speech given by Rutherford the 
previous evening. (c) Leo Szilard, nuclear physicist.
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6 HUMAN COMPATIBLE

field became far more mathematical. Connections were made to the 

 long-  established disciplines of probability, statistics, and control the-

ory. The seeds of today’s progress were sown during that AI winter, 

including early work on  large-  scale probabilistic reasoning systems 

and what later became known as deep learning.
Beginning around 2011, deep learning techniques began to pro-

duce dramatic advances in speech recognition, visual object recogni-

tion, and machine  translation—  three of the most important open 

problems in the field. By some measures, machines now match or ex-

ceed human capabilities in these areas. In 2016 and 2017, DeepMind’s 

AlphaGo defeated Lee Sedol, former world Go champion, and Ke Jie, 

the current  champion—  events that some experts predicted wouldn’t 

happen until 2097, if ever.6

Now AI generates  front-  page media coverage almost every day. 

Thousands of start- up companies have been created, fueled by a flood 

of venture funding. Millions of students have taken online AI and 

machine learning courses, and experts in the area command salaries in 

the millions of dollars. Investments flowing from venture funds, na-

tional governments, and major corporations are in the tens of billions 

of dollars  annually—  more money in the last five years than in the en-

tire previous history of the field. Advances that are already in the 

pipeline, such as  self-  driving cars and intelligent personal assistants, 

are likely to have a substantial impact on the world over the next de-

cade or so. The potential economic and social benefits of AI are vast, 

creating enormous momentum in the AI research enterprise. 

What Happens Next?

Does this rapid rate of progress mean that we are about to be over-

taken by machines? No. There are several breakthroughs that have 

to happen before we have anything resembling machines with super-

human intelligence.
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stored immense amounts of energy; yet the prevailing view was that 

tapping this source of energy was impossible.

On September 11, 1933, the British Association for the Advance-

ment of Science held its annual meeting in Leicester. Lord Rutherford 

addressed the evening session. As he had done several times before, he 

poured cold water on the prospects for atomic energy: “Anyone who 

looks for a source of power in the transformation of the atoms is 

talking moonshine.” Rutherford’s speech was reported in the Times of 

London the next morning (figure 2[b]).

Leo Szilard (figure 2[c]), a Hungarian physicist who had recently 

fled from Nazi Germany, was staying at the Imperial Hotel on Russell 

 (a)  (b) (c)

FIGURE 2: (a) Lord Rutherford, nuclear physicist. (b) Excerpts from a report in 
the Times of September 12, 1933, concerning a speech given by Rutherford the 
previous evening. (c) Leo Szilard, nuclear physicist.
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field became far more mathematical. Connections were made to the 

 long-  established disciplines of probability, statistics, and control the-
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 die-  hard centrists are likely to click on, but it’s not easy to imagine 

what this category consists of.) Like any rational entity, the algorithm 

learns how to modify the state of its  environment—  in this case, the 

user’s  mind—  in order to maximize its own reward.8 The consequences 

include the resurgence of fascism, the dissolution of the social contract 

that underpins democracies around the world, and potentially the end 

of the European Union and NATO. Not bad for a few lines of code, 

even if it had a helping hand from some humans. Now imagine what a 

really intelligent algorithm would be able to do.

What Went Wrong?

The history of AI has been driven by a single mantra: “The more intel-

ligent the better.” I am convinced that this is a  mistake—  not because 

of some vague fear of being superseded but because of the way we 

have understood intelligence itself.

The concept of intelligence is central to who we  are—  that’s why 

we call ourselves Homo sapiens, or “wise man.” After more than two 

thousand years of  self-  examination, we have arrived at a characteriza-

tion of intelligence that can be boiled down to this:

Humans are intelligent to the extent that our actions can be expected 

to achieve our objectives.

All those other characteristics of  intelligence—  perceiving, thinking, 

learning, inventing, and so  on—  can be understood through their con-

tributions to our ability to act successfully. From the very beginnings 

of AI, intelligence in machines has been defined in the same way:

Machines are intelligent to the extent that their actions can be expected 

to achieve their objectives.
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Square in London. He read the Times’ report at breakfast. Mulling over 

what he had read, he went for a walk and invented the  neutron-  induced 

nuclear chain reaction.7 The problem of liberating nuclear energy went 

from impossible to essentially solved in less than  twenty-  four hours. 

Szilard filed a secret patent for a nuclear reactor the following year. The 

first patent for a nuclear weapon was issued in France in 1939.

The moral of this story is that betting against human ingenuity is 

foolhardy, particularly when our future is at stake. Within the AI 

community, a kind of denialism is emerging, even going as far as deny-

ing the possibility of success in achieving the  long-  term goals of AI. It’s 

as if a bus driver, with all of humanity as passengers, said, “Yes, I am 

driving as hard as I can towards a cliff, but trust me, we’ll run out of 

gas before we get there!”

I am not saying that success in AI will necessarily happen, and I 

think it’s quite unlikely that it will happen in the next few years. It 

seems prudent, nonetheless, to prepare for the eventuality. If all goes 

well, it would herald a golden age for humanity, but we have to face 

the fact that we are planning to make entities that are far more pow-

erful than humans. How do we ensure that they never, ever have 

power over us?

To get just an inkling of the fire we’re playing with, consider how 

 content-  selection algorithms function on social media. They aren’t 

particularly intelligent, but they are in a position to affect the entire 

world because they directly influence billions of people. Typically, 

such algorithms are designed to maximize  click-  through, that is, the 

probability that the user clicks on presented items. The solution is 

simply to present items that the user likes to click on, right? Wrong. 

The solution is to change the user’s preferences so that they become 

more predictable. A more predictable user can be fed items that they 

are likely to click on, thereby generating more revenue. People with 

more extreme political views tend to be more predictable in which 

items they will click on. (Possibly there is a category of articles that 
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objective into a machine that is more intelligent than us, it will achieve 

the objective, and we lose. The  social-  media meltdown I described 

earlier is just a foretaste of this, resulting from optimizing the wrong 

objective on a global scale with fairly unintelligent algorithms. In 

Chapter 5, I spell out some far worse outcomes.

All this should come as no great surprise. For thousands of years, 

we have known the perils of getting exactly what you wish for. In 

 every story where someone is granted three wishes, the third wish is 

always to undo the first two wishes.

In summary, it seems that the march towards superhuman intelli-

gence is unstoppable, but success might be the undoing of the human 

race. Not all is lost, however. We have to understand where we went 

wrong and then fix it.

Can We Fix It?

The problem is right there in the basic definition of AI. We say that 

machines are intelligent to the extent that their actions can be ex-

pected to achieve their objectives, but we have no reliable way to make 

sure that their objectives are the same as our objectives.

What if, instead of allowing machines to pursue their objectives, 

we insist that they pursue our objectives? Such a machine, if it could 

be designed, would be not just intelligent but also beneficial to humans. 

So let’s try this:

Machines are beneficial to the extent that their actions can be ex-

pected to achieve our objectives.

This is probably what we should have done all along.

The difficult part, of course, is that our objectives are in us (all 

eight billion of us, in all our glorious variety) and not in the machines. 

It is, nonetheless, possible to build machines that are beneficial in 

10 HUMAN COMPATIBLE

Because machines, unlike humans, have no objectives of their own, 

we give them objectives to achieve. In other words, we build optimiz-

ing machines, we feed objectives into them, and off they go.

This general approach is not unique to AI. It recurs throughout the 

technological and mathematical underpinnings of our society. In the 

field of control theory, which designs control systems for everything 

from jumbo jets to insulin pumps, the job of the system is to mini-

mize a cost function that typically measures some deviation from a 

desired behavior. In the field of economics, mechanisms and policies 

are designed to maximize the utility of individuals, the welfare of 

groups, and the profit of corporations.9 In operations research, which 

solves complex logistical and manufacturing problems, a solution 

maximizes an expected sum of rewards over time. Finally, in statistics, 

learning algorithms are designed to minimize an expected loss func-
tion that defines the cost of making prediction errors.

Evidently, this general  scheme—  which I will call the standard 
 model—  is widespread and extremely powerful. Unfortunately, we 
don’t want machines that are intelligent in this sense.

The drawback of the standard model was pointed out in 1960 by 

Norbert Wiener, a legendary professor at MIT and one of the leading 

mathematicians of the  mid-  twentieth century. Wiener had just seen 

Arthur Samuel’s  checker-  playing program learn to play checkers far 

better than its creator. That experience led him to write a prescient 

but  little-  known paper, “Some Moral and Technical Consequences of 

Automation.” 10 Here’s how he states the main point:

If we use, to achieve our purposes, a mechanical agency with 

whose operation we cannot interfere  effectively . . . we had better 

be quite sure that the purpose put into the machine is the purpose 

which we really desire.

“The purpose put into the machine” is exactly the objective that ma-

chines are optimizing in the standard model. If we put the wrong 
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better than its creator. That experience led him to write a prescient 

but  little-  known paper, “Some Moral and Technical Consequences of 

Automation.” 10 Here’s how he states the main point:

If we use, to achieve our purposes, a mechanical agency with 

whose operation we cannot interfere  effectively . . . we had better 

be quite sure that the purpose put into the machine is the purpose 

which we really desire.

“The purpose put into the machine” is exactly the objective that ma-

chines are optimizing in the standard model. If we put the wrong 

 I F  WE SUCCEED 11

objective into a machine that is more intelligent than us, it will achieve 

the objective, and we lose. The  social-  media meltdown I described 

earlier is just a foretaste of this, resulting from optimizing the wrong 

objective on a global scale with fairly unintelligent algorithms. In 

Chapter 5, I spell out some far worse outcomes.

All this should come as no great surprise. For thousands of years, 

we have known the perils of getting exactly what you wish for. In 

 every story where someone is granted three wishes, the third wish is 

always to undo the first two wishes.

In summary, it seems that the march towards superhuman intelli-

gence is unstoppable, but success might be the undoing of the human 

race. Not all is lost, however. We have to understand where we went 

wrong and then fix it.

Can We Fix It?

The problem is right there in the basic definition of AI. We say that 

machines are intelligent to the extent that their actions can be ex-

pected to achieve their objectives, but we have no reliable way to make 

sure that their objectives are the same as our objectives.

What if, instead of allowing machines to pursue their objectives, 

we insist that they pursue our objectives? Such a machine, if it could 

be designed, would be not just intelligent but also beneficial to humans. 

So let’s try this:

Machines are beneficial to the extent that their actions can be ex-

pected to achieve our objectives.

This is probably what we should have done all along.

The difficult part, of course, is that our objectives are in us (all 

eight billion of us, in all our glorious variety) and not in the machines. 

It is, nonetheless, possible to build machines that are beneficial in 

10 HUMAN COMPATIBLE

Because machines, unlike humans, have no objectives of their own, 

we give them objectives to achieve. In other words, we build optimiz-

ing machines, we feed objectives into them, and off they go.

This general approach is not unique to AI. It recurs throughout the 

technological and mathematical underpinnings of our society. In the 

field of control theory, which designs control systems for everything 

from jumbo jets to insulin pumps, the job of the system is to mini-

mize a cost function that typically measures some deviation from a 

desired behavior. In the field of economics, mechanisms and policies 

are designed to maximize the utility of individuals, the welfare of 

groups, and the profit of corporations.9 In operations research, which 

solves complex logistical and manufacturing problems, a solution 

maximizes an expected sum of rewards over time. Finally, in statistics, 

learning algorithms are designed to minimize an expected loss func-
tion that defines the cost of making prediction errors.

Evidently, this general  scheme—  which I will call the standard 
 model—  is widespread and extremely powerful. Unfortunately, we 
don’t want machines that are intelligent in this sense.

The drawback of the standard model was pointed out in 1960 by 

Norbert Wiener, a legendary professor at MIT and one of the leading 

mathematicians of the  mid-  twentieth century. Wiener had just seen 

Arthur Samuel’s  checker-  playing program learn to play checkers far 

better than its creator. That experience led him to write a prescient 

but  little-  known paper, “Some Moral and Technical Consequences of 

Automation.” 10 Here’s how he states the main point:

If we use, to achieve our purposes, a mechanical agency with 

whose operation we cannot interfere  effectively . . . we had better 

be quite sure that the purpose put into the machine is the purpose 

which we really desire.

“The purpose put into the machine” is exactly the objective that ma-

chines are optimizing in the standard model. If we put the wrong 

Copyrighted Material



2 

INTELLIGENCE IN HUMANS 
AND MACHINES

When you arrive at a dead end, it’s a good idea to retrace 

your steps and work out where you took a wrong turn. I 

have argued that the standard model of AI, wherein ma-

chines optimize a fixed objective supplied by humans, is a dead end. 

The problem is not that we might fail to do a good job of building AI 

systems; it’s that we might succeed too well. The very definition of 

success in AI is wrong.

So let’s retrace our steps, all the way to the beginning. Let’s try to 

understand how our concept of intelligence came about and how it 

came to be applied to machines. Then we have a chance of coming up 

with a better definition of what counts as a good AI system.

Intelligence

How does the universe work? How did life begin? Where are my keys? 

These are fundamental questions worthy of thought. But who is ask-

ing these questions? How am I answering them? How can a handful 
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exactly this sense. Inevitably, these machines will be uncertain about 

our  objectives—  after all, we are uncertain about them  ourselves—  but 

it turns out that this is a feature, not a bug (that is, a good thing and 

not a bad thing). Uncertainty about objectives implies that machines 

will necessarily defer to humans: they will ask permission, they will 

accept correction, and they will allow themselves to be switched off.

Removing the assumption that machines should have a definite 

objective means that we will need to tear out and replace part of 

the foundations of artificial  intelligence—  the basic definitions of what 

we are trying to do. That also means rebuilding a great deal of the 

 superstructure—  the accumulation of ideas and methods for actually 

doing AI. The result will be a new relationship between humans and 

machines, one that I hope will enable us to navigate the next few de-

cades successfully.
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glucose, it swims longer and tumbles less, and it does the opposite 

when it senses a decreasing concentration of glucose. So, what it does 

(swim towards glucose) is likely to achieve what it wants (more glu-

cose, let’s assume), given what it has perceived (an increasing glucose 

concen tration).

Perhaps you are thinking, “But evolution built this into its genes 

too! How does that make it intelligent?” This is a dangerous line of 

reasoning, because evolution built the basic design of your brain into 

your genes too, and presumably you wouldn’t wish to deny your own 

intelligence on that basis. The point is that what evolution has built 

into E. coli’s genes, as it has into yours, is a mechanism whereby the 

bacterium’s behavior varies according to what it perceives in its envi-

ronment. Evolution doesn’t know, in advance, where the glucose is 

going to be or where your keys are, so putting the capability to find 

them into the organism is the next best thing.

Now, E.  coli is no intellectual giant. As far as we know, it doesn’t 

remember where it has been, so if it goes from A to B and finds no 

glucose, it’s just as likely to go back to A. If we construct an environ-

ment where every attractive glucose gradient leads only to a spot of 

phenol (which is a poison for E.  coli), the bacterium will keep follow-

ing those gradients. It never learns. It has no brain, just a few simple 

chemical reactions to do the job.

A big step forward occurred with action potentials, which are a form 

of electrical signaling that first evolved in  single-  celled organisms 

around a billion years ago. Later multicellular organisms evolved spe-

cialized cells called neurons that use electrical action potentials to carry 

signals  rapidly—  up to 120 meters per second, or 270 miles per  hour— 

 within the organism. The connections between neurons are called syn-
apses. The strength of the synaptic connection dictates how much 

electrical excitation passes from one neuron to another. By changing 

the strength of synaptic connections, animals learn.1 Learning confers a 

huge evolutionary advantage, because the animal can adapt to a range 

of circumstances. Learning also speeds up the rate of evolution itself.
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of  matter—  the few pounds of  pinkish-  gray blancmange we call a 

 brain—  perceive, understand, predict, and manipulate a world of un-

imaginable vastness? Before long, the mind turns to examine itself.

We have been trying for thousands of years to understand how our 

minds work. Initially, the purposes included curiosity,  self-  management, 

persuasion, and the rather pragmatic goal of analyzing mathematical 

arguments. Yet every step towards an explanation of how the mind 

works is also a step towards the creation of the mind’s capabilities in an 

 artifact—  that is, a step towards artificial intelligence.

Before we can understand how to create intelligence, it helps to 

understand what it is. The answer is not to be found in IQ tests, or 

even in Turing tests, but in a simple relationship between what we 

perceive, what we want, and what we do. Roughly speaking, an entity 

is intelligent to the extent that what it does is likely to achieve what it 

wants, given what it has perceived.

Evolutionary origins

Consider a lowly bacterium, such as E.  coli. It is equipped with 

about half a dozen  flagella—  long, hairlike tentacles that rotate at the 

base either clockwise or counterclockwise. (The rotary motor itself is 

an amazing thing, but that’s another story.) As E.  coli floats about in its 

liquid  home—  your lower  intestine—  it alternates between rotating its 

flagella clockwise, causing it to “tumble” in place, and counterclock-

wise, causing the flagella to twine together into a kind of propeller so 

the bacterium swims in a straight line. Thus, E.  coli does a sort of ran-

dom  walk—  swim, tumble, swim,  tumble—  that allows it to find and 

consume glucose rather than staying put and dying of starvation.

If this were the whole story, we wouldn’t say that E.  coli is particu-

larly intelligent, because its actions would not depend in any way on 

its environment. It wouldn’t be making any decisions, just executing a 

fixed behavior that evolution has built into its genes. But this isn’t 

the whole story. When E.  coli senses an increasing concentration of 
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prediction? Not at all. It makes absolutely no difference.3 Your predic-

tion about its behavior is exactly the same, because the prediction is 

based on the code. All those Hollywood plots about machines myste-

riously becoming conscious and hating humans are really missing the 

point: it’s competence, not consciousness, that matters.

There is one important cognitive aspect of the brain that we are 
beginning to understand—namely, the reward system. This is an inter-

nal signaling system, mediated by dopamine, that connects positive 

and negative stimuli to behavior. Its workings were discovered by 

the Swedish neuroscientist  Nils-  Åke Hillarp and his collaborators in 

the late 1950s. It causes us to seek out positive stimuli, such as  sweet- 

 tasting foods, that increase dopamine levels; it makes us avoid negative 

stimuli, such as hunger and pain, that decrease dopamine levels. In a 

sense it’s quite similar to E. coli’s  glucose-  seeking mechanism, but 

much more complex. It comes with built- in methods for learning, so 

that our behavior becomes more effective at obtaining reward over 

time. It also allows for delayed gratification, so that we learn to desire 

things such as money that provide eventual reward rather than imme-

diate reward. One reason we understand the brain’s reward system is 

that it resembles the method of reinforcement learning developed in AI, 

for which we have a very solid theory.4

From an evolutionary point of view, we can think of the brain’s 

reward system, just like E. coli’s  glucose-  seeking mechanism, as a way 

of improving evolutionary fitness. Organisms that are more effective 

in seeking  reward—  that is, finding delicious food, avoiding pain, en-

gaging in sexual activity, and so  on—  are more likely to propagate their 

genes. It is extraordinarily difficult for an organism to decide what 

actions are most likely, in the long run, to result in successful propa-

gation of its genes, so evolution has made it easier for us by providing 

built- in signposts.

These signposts are not perfect, however. There are ways to obtain 

reward that probably reduce the likelihood that one’s genes will prop-
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Initially, neurons were organized into nerve nets, which are distrib-

uted throughout the organism and serve to coordinate activities such 

as eating and digestion or the timed contraction of muscle cells across 

a wide area. The graceful propulsion of jellyfish is the result of a nerve 

net. Jellyfish have no brains at all.

Brains came later, along with complex sense organs such as eyes 

and ears. Several hundred million years after jellyfish emerged with 

their nerve nets, we humans arrived with our big  brains—  a hundred 

billion (1011) neurons and a quadrillion (1015) synapses. While slow 

compared to electronic circuits, the “cycle time” of a few milliseconds 

per state change is fast compared to most biological processes. The 

human brain is often described by its owners as “the most complex 

object in the universe,” which probably isn’t true but is a good excuse 

for the fact that we still understand little about how it really works. 

While we know a great deal about the biochemistry of neurons and 

synapses and the anatomical structures of the brain, the neural imple-

mentation of the cognitive  level—  learning, knowing, remembering, 

reasoning, planning, deciding, and so  on—  is still mostly anyone’s 

guess.2 (Perhaps that will change as we understand more about AI, or 

as we develop ever more precise tools for measuring brain activity.) 

So, when one reads in the media that  such-  and-  such AI technique 

“works just like the human brain,” one may suspect it’s either just 

someone’s guess or plain fiction.

In the area of consciousness, we really do know nothing, so I’m go-

ing to say nothing. No one in AI is working on making machines con-

scious, nor would anyone know where to start, and no behavior has 

consciousness as a prerequisite. Suppose I give you a program and ask, 

“Does this present a threat to humanity?” You analyze the code and 

indeed, when run, the code will form and carry out a plan whose re-

sult will be the destruction of the human race, just as a chess program 

will form and carry out a plan whose result will be the defeat of any 

human who faces it. Now suppose I tell you that the code, when run, 

also creates a form of machine consciousness. Will that change your 
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prediction? Not at all. It makes absolutely no difference.3 Your predic-

tion about its behavior is exactly the same, because the prediction is 

based on the code. All those Hollywood plots about machines myste-

riously becoming conscious and hating humans are really missing the 

point: it’s competence, not consciousness, that matters.

There is one important cognitive aspect of the brain that we are 
beginning to understand—namely, the reward system. This is an inter-

nal signaling system, mediated by dopamine, that connects positive 

and negative stimuli to behavior. Its workings were discovered by 

the Swedish neuroscientist  Nils-  Åke Hillarp and his collaborators in 

the late 1950s. It causes us to seek out positive stimuli, such as  sweet- 

 tasting foods, that increase dopamine levels; it makes us avoid negative 
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Clearly, if evolution has to worry about choosing only the first three 

digits, its job is much easier; the adaptive organism, in learning the last 

three digits, is doing in one lifetime what evolution would have taken 

many generations to do. So, provided the adaptive organisms can sur-

vive while learning, it seems that the capability for learning consti-

tutes an evolutionary shortcut. Computational simulations suggest 

that the Baldwin effect is real.9 The effects of culture only accelerate 

the process, because an organized civilization protects the individual 

organism while it is learning and passes on information that the indi-

vidual would otherwise need to learn for itself.

The story of the Baldwin effect is fascinating but incomplete: it 

assumes that learning and evolution necessarily point in the same di-

rection. That is, it assumes that whatever internal feedback signal de-

fines the direction of learning within the organism is perfectly aligned 

with evolutionary fitness. As we have seen in the case of the pygmy 

 three-  toed sloth, this does not seem to be true. At best, built- in mech-

anisms for learning provide only a crude hint of the  long-  term conse-

quences of any given action for evolutionary fitness. Moreover, one has 

to ask, “How did the reward system get there in the first place?” The 

answer, of course, is by an evolutionary process, one that internalized 

a feedback mechanism that is at least somewhat aligned with evolu-

tionary fitness.10 Clearly, a learning mechanism that caused organisms 

to run away from potential mates and towards predators would not 

last long.

Thus, we have the Baldwin effect to thank for the fact that neu-

rons, with their capabilities for learning and problem solving, are so 

widespread in the animal kingdom. At the same time, it is important 

to understand that evolution doesn’t really care whether you have a 

brain or think interesting thoughts. Evolution considers you only as an 

agent, that is, something that acts. Such worthy intellectual character-

istics as logical reasoning, purposeful planning, wisdom, wit, imagina-

tion, and creativity may be essential for making an agent intelligent, or 

they may not. One reason artificial intelligence is so fascinating is that 

18 HUMAN COMPATIBLE

carbonated beverages, and playing video games for eighteen hours a 

day all seem counterproductive in the reproduction stakes. Moreover, 

if you were given direct electrical access to your reward system, you 

would probably  self-  stimulate without stopping until you died.5

The misalignment of reward signals and evolutionary fitness 

doesn’t affect only isolated individuals. On a small island off the coast 

of Panama lives the pygmy  three-  toed sloth, which appears to be ad-

dicted to a  Valium-  like substance in its diet of red mangrove leaves 

and may be going extinct.6 Thus, it seems that an entire species can 

disappear if it finds an ecological niche where it can satisfy its reward 

system in a maladaptive way.

Barring these kinds of accidental failures, however, learning to 

maximize reward in natural environments will usually improve one’s 

chances for propagating one’s genes and for surviving environmental 

changes.

Evolutionary accelerator

Learning is good for more than surviving and prospering. It also 

speeds up evolution. How could this be? After all, learning doesn’t 

change one’s DNA, and evolution is all about changing DNA over 

generations. The connection between learning and evolution was pro-

posed in 1896 by the American psychologist James Baldwin7 and in-

dependently by the British ethologist Conwy Lloyd Morgan8 but not 

generally accepted at the time.

The Baldwin effect, as it is now known, can be understood by 

imagining that evolution has a choice between creating an instinctive 
organism whose every response is fixed in advance and creating an 

adaptive organism that learns what actions to take. Now suppose, for 

the purposes of illustration, that the optimal instinctive organism can 

be coded as a  six-  digit number, say, 472116, while in the case of the 

adaptive organism, evolution specifies only 472*** and the organism 

itself has to fill in the last three digits by learning during its lifetime. 
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action is one that, according to logical deduction across a sequence of 

actions, “easily and best” produces the end.

Aristotle’s proposal seems reasonable, but it isn’t a complete guide 

to rational behavior. In particular, it omits the issue of uncertainty. In 

the real world, reality has a tendency to intervene, and few actions or 

sequences of actions are truly guaranteed to achieve the intended end. 

For example, it is a rainy Sunday in Paris as I write this sentence, and 

on Tuesday at 2:15 p.m. my flight to Rome leaves from Charles de 

Gaulle Airport, about  forty-  five minutes from my house. I plan to 

leave for the airport around 11:30 a.m., which should give me plenty 

of time, but it probably means at least an hour sitting in the departure 

area. Am I certain to catch the flight? Not at all. There could be huge 

traffic jams, the taxi drivers may be on strike, the taxi I’m in may 

break down or the driver may be arrested after a  high-  speed chase, 

and so on. Instead, I could leave for the airport on Monday, a whole 

day in advance. This would greatly reduce the chance of missing the 

flight, but the prospect of a night in the departure lounge is not an 

appealing one. In other words, my plan involves a  trade-  off between 

the certainty of success and the cost of ensuring that degree of cer-

tainty. The following plan for buying a house involves a similar  trade- 

 off: buy a lottery ticket, win a million dollars, then buy the house. 

This plan “easily and best” produces the end, but it’s not very likely to 

succeed. The difference between this harebrained  house-  buying plan 

and my sober and sensible airport plan is, however, just a matter of 

degree. Both are gambles, but one seems more rational than the other.

It turns out that gambling played a central role in generalizing Ar-

istotle’s proposal to account for uncertainty. In the 1560s, the Italian 

mathematician Gerolamo Cardano developed the first mathemati-

cally precise theory of  probability—  using dice games as his main ex-

ample. (Unfortunately, his work was not published until 1663.13) In 

the seventeenth century, French thinkers including Antoine Arnauld 

and Blaise Pascal  began—  for assuredly mathematical  reasons—  to 

20 HUMAN COMPATIBLE

it offers a potential route to understanding these issues: we may come 

to understand both how these intellectual characteristics make intel-

ligent behavior possible and why it’s impossible to produce truly intel-

ligent behavior without them.

Rationality for one

From the earliest beginnings of ancient Greek philosophy, the con-

cept of intelligence has been tied to the ability to perceive, to reason, 

and to act successfully.11 Over the centuries, the concept has become 

both broader in its applicability and more precise in its definition.

Aristotle, among others, studied the notion of successful  reasoning— 

 methods of logical deduction that would lead to true conclusions given 

true premises. He also studied the process of deciding how to  act— 

 sometimes called practical  reasoning—  and proposed that it involved 

deducing that a certain course of action would achieve a desired goal:

We deliberate not about ends, but about means. For a doctor does 

not deliberate whether he shall heal, nor an orator whether he 

shall  persuade. . . . They assume the end and consider how and by 

what means it is attained, and if it seems easily and best produced 

thereby; while if it is achieved by one means only they consider 

how it will be achieved by this and by what means this will be 

achieved, till they come to the first  cause . . . and what is last in the 

order of analysis seems to be first in the order of becoming. And if 

we come on an impossibility, we give up the search, e.g., if we 

need money and this cannot be got; but if a thing appears possible 

we try to do it.12

This passage, one might argue, set the tone for the next  two-  thousand- 

 odd years of Western thought about rationality. It says that the “end”— 

 what the person  wants—  is fixed and given; and it says that the rational 
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the utility of having $10,000,000. How much less? You can ask your-

self! What would the odds of winning a billion dollars have to be for 

you to give up a guaranteed ten million? I asked this question of the 

graduate students in my class and their answer was around 50 percent, 

meaning that bet B would have an expected value of $500 million to 

match the desirability of bet A. Let me say that again: bet B would 

have an expected dollar value fifty times greater than bet A, but the 

two bets would have equal utility.

Bernoulli’s introduction of  utility—  an invisible  property—  to ex-

plain human behavior via a mathematical theory was an utterly re-

markable proposal for its time. It was all the more remarkable for the 

fact that, unlike monetary amounts, the utility values of various bets 

and prizes are not directly observable; instead, utilities are to be in-
ferred from the preferences exhibited by an individual. It would be two 

centuries before the implications of the idea were fully worked out 

and it became broadly accepted by statisticians and economists. 

In the middle of the twentieth century, John von Neumann (a 

great mathematician after whom the standard “von Neumann archi-

tecture” for computers was named16) and Oskar Morgenstern pub-

lished an axiomatic basis for utility theory.17 What this means is the 

following: as long as the preferences exhibited by an individual satisfy 

certain basic axioms that any rational agent should satisfy, then neces-
sarily the choices made by that individual can be described as maxi-

mizing the expected value of a utility function. In short, a rational 
agent acts so as to maximize expected utility.

It’s hard to overstate the importance of this conclusion. In many 

ways, artificial intelligence has been mainly about working out the 

details of how to build rational machines.

Let’s look in a bit more detail at the axioms that rational entities 

are expected to satisfy. Here’s one, called transitivity: if you prefer A 

to B and you prefer B to C, then you prefer A to C. This seems pretty 

reasonable! (If you prefer sausage pizza to plain pizza, and you prefer 

plain pizza to pineapple pizza, then it seems reasonable to predict that 

22 HUMAN COMPATIBLE

study the question of rational decisions in gambling.14 Consider the 

following two bets:

A: 20 percent chance of winning $10

B: 5 percent chance of winning $100

The proposal the mathematicians came up with is probably the same 

one you would come up with: compare the expected values of the bets, 

which means the average amount you would expect to get from each 

bet. For bet A, the expected value is 20 percent of $10, or $2. For bet 

B, the expected value is 5 percent of $100, or $5. So bet B is better, 

according to this theory. The theory makes sense, because if the same 

bets are offered over and over again, a bettor who follows the rule ends 

up with more money than one who doesn’t.

In the eighteenth century, the Swiss mathematician Daniel Ber-

noulli noticed that this rule didn’t seem to work well for larger amounts 

of money.15 For example, consider the following two bets:

A: 100 percent chance of getting $10,000,000 

(expected value $10,000,000)

B: 1 percent chance of getting $1,000,000,100 

(expected value $10,000,001)

Most readers of this book, as well as its author, would prefer bet A to 

bet B, even though the  expected-  value rule says the opposite! Ber-

noulli posited that bets are evaluated not according to expected mon-

etary value but according to expected utility.  Utility—  the property of 

being useful or beneficial to a  person—  was, he suggested, an internal, 

subjective quantity related to, but distinct from, monetary value. In 

particular, utility exhibits diminishing returns with respect to money. 

This means that the utility of a given amount of money is not strictly 

proportional to the amount but grows more slowly. For example, the 

utility of having $1,000,000,100 is much less than a hundred times 
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reasonable! (If you prefer sausage pizza to plain pizza, and you prefer 

plain pizza to pineapple pizza, then it seems reasonable to predict that 
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study the question of rational decisions in gambling.14 Consider the 

following two bets:

A: 20 percent chance of winning $10

B: 5 percent chance of winning $100

The proposal the mathematicians came up with is probably the same 

one you would come up with: compare the expected values of the bets, 

which means the average amount you would expect to get from each 

bet. For bet A, the expected value is 20 percent of $10, or $2. For bet 

B, the expected value is 5 percent of $100, or $5. So bet B is better, 

according to this theory. The theory makes sense, because if the same 

bets are offered over and over again, a bettor who follows the rule ends 

up with more money than one who doesn’t.

In the eighteenth century, the Swiss mathematician Daniel Ber-

noulli noticed that this rule didn’t seem to work well for larger amounts 

of money.15 For example, consider the following two bets:

A: 100 percent chance of getting $10,000,000 

(expected value $10,000,000)

B: 1 percent chance of getting $1,000,000,100 

(expected value $10,000,001)

Most readers of this book, as well as its author, would prefer bet A to 

bet B, even though the  expected-  value rule says the opposite! Ber-

noulli posited that bets are evaluated not according to expected mon-

etary value but according to expected utility.  Utility—  the property of 

being useful or beneficial to a  person—  was, he suggested, an internal, 

subjective quantity related to, but distinct from, monetary value. In 

particular, utility exhibits diminishing returns with respect to money. 

This means that the utility of a given amount of money is not strictly 

proportional to the amount but grows more slowly. For example, the 

utility of having $1,000,000,100 is much less than a hundred times 
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together to calculate expected utilities. These objections are simply 

confusing two different things: choosing the rational action and choos-

ing it by calculating expected utilities. For example, if you try to poke 

your eyeball with your finger, your eyelid closes to protect your eye; 

this is rational, but no  expected-  utility calculations are involved. Or 

suppose you are riding a bicycle downhill with no brakes and have a 

choice between crashing into one concrete wall at ten miles per hour 

or another, farther down the hill, at twenty miles per hour; which 

would you prefer? If you chose ten miles per hour, congratulations! 

Did you calculate expected utilities? Probably not. But the choice of 

ten miles per hour is still rational. This follows from two basic as-

sumptions: first, you prefer less severe injuries to more severe injuries, 

and second, for any given level of injuries, increasing the speed of 

 collision increases the probability of exceeding that level. From these 

two assumptions it follows  mathematically—  without considering any 

numbers at  all—  that crashing at ten miles per hour has higher ex-

pected utility than crashing at twenty.20 In summary, maximizing 

 expected utility may not require calculating any expectations or any 

utilities. It’s a purely external description of a rational entity.

Another critique of the theory of rationality lies in the identifica-

tion of the locus of decision making. That is, what things count as 

agents? It might seem obvious that humans are agents, but what about 

families, tribes, corporations, cultures, and  nation-  states? If we exam-

ine social insects such as ants, does it make sense to consider a single 

ant as an intelligent agent, or does the intelligence really lie in the 

colony as a whole, with a kind of composite brain made up of multiple 

ant brains and bodies that are interconnected by pheromone signaling 

instead of electrical signaling? From an evolutionary point of view, this 

may be a more productive way of thinking about ants, since the ants 

in a given colony are typically closely related. As individuals, ants and 

other social insects seem to lack an instinct for  self-  preservation as 

distinct from colony preservation: they will always throw themselves 

into battle against invaders, even at suicidal odds. Yet sometimes 
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you will choose sausage pizza over pineapple pizza.) Here’s another, 

called monotonicity: if you prefer prize A to prize B, and you have a 

choice of lotteries where A and B are the only two possible outcomes, 

you prefer the lottery with the highest probability of getting A rather 

than B. Again, pretty reasonable.

Preferences are not just about pizza and lotteries with monetary 

prizes. They can be about anything at all; in particular, they can be 

about entire future lives and the lives of others. When dealing with 

preferences involving sequences of events over time, there is an addi-

tional assumption that is often made, called stationarity: if two differ-

ent futures A and B begin with the same event, and you prefer A to 

B, you still prefer A to B after the event has occurred. This sounds 

reasonable, but it has a surprisingly strong consequence: the utility of 

any sequence of events is the sum of rewards associated with each 

event (possibly discounted over time, by a sort of mental interest 

rate).18 Although this “utility as a sum of rewards” assumption is 

 widespread—  going back at least to the  eighteenth-  century “hedonic 

calculus” of Jeremy Bentham, the founder of  utilitarianism—  the sta-

tionarity assumption on which it is based is not a necessary property 

of rational agents. Stationarity also rules out the possibility that one’s 

preferences might change over time, whereas our experience indicates 

otherwise.

Despite the reasonableness of the axioms and the importance of 

the conclusions that follow from them, utility theory has been sub-

jected to a continual barrage of objections since it first became widely 

known. Some despise it for supposedly reducing everything to money 

and selfishness. (The theory was derided as “American” by some French 

authors,19 even though it has its roots in France.) In fact, it is perfectly 

rational to want to live a life of  self-  denial, wishing only to reduce the 

suffering of others. Altruism simply means placing substantial weight 

on the  well-  being of others in evaluating any given future.

Another set of objections has to do with the difficulty of obtaining 

the necessary probabilities and utility values and multiplying them 
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