


Preface

This fourth volume in The Theoretical Minimum (TTM) series on
general relativity is the natural continuation of the third volume
on special relativity.

In special relativity, Einstein, starting from a very simple princi-
ple — the laws of physics should be the same in indistinguishable
Galilean referentials — deeply clarified in a couple of papers pub-
lished in 1905 the various disturbing observations physicists had
made and the equations they had written in the last years of the
nineteenth and the first years of the twentieth century concerning
light and other phenomena.

Special relativity led to a strange description of space-time where
time and space were inextricably mingled. For instance, it ex-
plained how particles whose lifetime is measured in fractions of a
second can have, in our referential, a travel time from the Sun to
Earth of more than eight minutes.

Then, from 1907 until 1915, essentially alone, Einstein reproduced
his feat starting now from another very simple principle — acceler-
ation and uniform gravity are equivalent. He generalized special
relativity to a space-time containing massive bodies. The theory is
called general relativity (GR). It led to an even stranger descrip-
tion of space-time where masses bend light and more generally
warp space and time.

In lecture 1, we prepare the groundwork. We show how the equiv-
alence principle inescapably leads to the bending of light rays by
massive bodies.

Lecture 2 is devoted to tensor mathematics because in GR we
must frequently change referentials and the equations relating co-
ordinates in one referential to coordinates in another are tensor
equations.
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Then a large part of the theory is expressed using tensor equa-
tions because they have the great quality that if they hold in one
referential, they hold in all of them.

Lectures 3, 4, and 5 are devoted to the geometry of Riemannian
space and Minkowskian space-time because it can be said, very
summarily, that gravity is geometry in a Minkowskian space-time.

In lectures 6, 7, and 8, we explore black holes, not so much because
they are interesting astronomical phenomena per se, than because
they are the equivalent in Minkowskian space-time of point masses
in Newtonian mechanics. Space-time however presents a stranger
behavior in the vicinity of a black hole than Newtonian space in
the vicinity of a point mass. Understanding well black holes, the
metric they create, their horizon, time and gravity in the vicinity
of their horizon, the way people in and out of a black hole can
communicate, etc. is a prerequisite to understanding GR.

In lecture 9 we sketch the derivation of Einstein field equations.
And in lecture 10 we present a simple application predicting grav-
ity waves.

This book, as the preceding ones in the series, is adapted from a
course I gave for several years, with much pleasure, at Stanford in
the Continuing Studies program to an audience of adults.

My coauthor this time is André Cabannes. Even though he is not
a professional scientist, his scientific training, including a Stanford
doctorate and a couple of years of teaching applied mathematics
at the Massachusetts Institute of Technology (MIT), helped him
assist me.

May Einstein’s way of doing physics — starting from the sim-
plest principles and pursuing dauntlessly the mathematics and
the physics to their ultimate consequences, however unsettling
they may be — as I have strived to show in this book, be a source
of inspiration to young and future physicists.

Leonard Susskind
Palo Alto, California
Fall 2022
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Ten years ago, when two of my children, then in their late teens,
were studying sciences to enter the French system of grandes
écoles, I decided to brush up what I had learned in the seventies
in order to accompany them in their studies. I discovered that
the Internet had profoundly changed the learning landscape. Be-
side reading books, one could now also take excellent free courses
on the Net. I leisurely attended courses in mathematics, physics,
computer science, etc. from MIT, Stanford, and other places.
The subject matters often were better explained, the courses more
lively and easier to understand, than what I had experienced in
the past. One could choose courses by the world’s best teachers.

Among these courses was The Theoretical Minimum series by
Leonard Susskind, famous among other reasons for his pioneer-
ing work on string theory. I liked them so much that when I
discovered that two of his filmed physics courses had already been
transformed into books, I decided to translate them in French.
Later I also translated the third book. Then, since the next vol-
ume didn’t exist in English yet, I took up writing the English
notes as well, having in mind that this work might turn out to
be useful. After a lot more work with Professor Susskind and Ba-
sic Books team, volume 4 in The Theoretical Minimum series, on
general relativity, that you hold in your hands is the result.

I belong to the group of people to whom these so-called Con-
tinuing Studies courses were intended: individuals who studied
physics at the undergraduate and sometimes graduate level when
they were students, then did other things in life, but kept an in-
terest in sciences and would like to have some exposure to where
physics stands today at a level above plain vulgarization. Indeed,
personally, I have always found vulgarization more confusing and
harder to understand than real explanations with some equations.

Leonard’s courses gave me access to Lagrangian classical mechan-
ics, quantum mechanics, and classical field theory with a clarity
that I had never known before. With his pedagogy and presenta-
tion it becomes a pleasure to learn. Of course, it is all the more
true when there is no examination of any sort at the end. But the
courses and books turned out to be useful for students as well, to
prepare for more advanced and academic studies.
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So whether you are someone who only wants to have some real
understanding of what general relativity is about — the stuff on
gravitation that is geometry, masses that bend space, light, and
time, black holes out there that you should avoid falling into, grav-
ity waves that we begin to detect, etc. — or you are a student in
physics who wants to have a first presentation of general relativity,
this book is for you.

André Cabannes
Saint-Cyr-sur-mer,
French Riviera
Fall 2022



Lecture 1: Equivalence Principle

and Tensor Analysis

Andy: So if I am in an elevator and I feel really heavy, I can’t
know whether the elevator is accelerating or you mischievously put
me on Jupiter?

Lenny: That’s right, you can’t.

Andy: But, at least on Jupiter, if I keep still, light rays won’t
bend.

Lenny: Oh yes they will.
Andy: Hmm, I see.

Lenny: And if you are falling into a black hole, beware, things will
get really strange. But, don’t worry, I’ll shed some light on this.

Andy: Er, bent or straight?

Introduction

Equivalence principle

Accelerated reference frames

Curvilinear coordinate transformations

Effect of gravity on light

Tidal forces

Non-Euclidean geometry

Riemannian geometry

Metric tensor

Mathematical interlude: Dummy variables

Mathematical interlude: Einstein summation convention
First tensor rule: Contravariant components of vectors
Mathematical interlude: Vectors and tensors

Second tensor rule: Covariant components of vectors
Covariant and contravariant components of vectors and tensors
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Introduction

General Relativity is the fourth volume in The Theoretical Mini-
mum (TTM) series. The first three were devoted respectively
to classical mechanics, quantum mechanics, and special relativity
and classical field theory. The first volume laid out the Lagrangian
and Hamiltonian description of physical phenomena and the prin-
ciple of least action, which is one of the fundamental principles
underlying all of physics (see volume 3, lecture 7 on fundamental
principles and gauge invariance). They were used in the first three
volumes and will continue in this and subsequent ones.

Physics extensively uses mathematics as its toolbox to construct
formal, quantifiable, workable theories of natural phenomena. The
main tools we used so far are trigonometry, vector spaces, and
calculus, that is, differentiation and integration. They have been
explained in volume 1 as well as in brief refresher sections in the
other volumes. We assume that the reader is familiar with these
mathematical tools and with the physical ideas presented in vol-
umes 1 and 3. The present volume 4, like volumes 1 and 3 (but
unlike volume 2), deals with classical physics in the sense that no
quantum uncertainty is involved.

We also began to make light use of tensors in volume 3 on special
relativity and classical field theory. Now with general relativity
we are going to use them extensively. We shall study them in de-
tail. As the reader remembers, tensors generalize vectors. Just as
vectors have different representations, with different sets of num-
bers (components of the vector) depending on the basis used to
chart the vector space they form, this is true of tensors as well.
The same tensor will have different components in different co-
ordinate systems. The rules to go from one set of components
to another will play a fundamental role. Moreover, we will work
mostly with tensor fields, which are sets of tensors, a different
tensor attached to each point of a space. Tensors were invented
by Ricci-Curbastro and Levi-Civita! to develop work of Gauss?

LGregorio Ricci-Curbastro (1853-1925) and his student Tullio Levi-Civita
(1873-1941) were Italian mathematicians. Their most important joint paper
is “Méthodes de calcul différentiel absolu et leurs applications,” in Mathema-
tische Annalen 54 (1900), pp. 125—201. They did not use the word tensor,
which was introduced later by other people.

2Carl Friedrich Gauss (1777-1855), German mathematician.
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on curvature of surfaces and Riemann® on non-Euclidean geome-

try. Einstein* made extensive use of tensors to build his theory of
general relativity. He also made important contributions to their
usage: the standard notation for indices and the Einstein summa-
tion convention.

In Savants et écrivains (1910), Poincaré® writes that “in mathe-
matical sciences, a good notation has the same philosophical im-
portance as a good classification in natural sciences.” In this book
we will take care to always use the clearest and lightest notation
possible.

Equivalence Principle

Einstein’s revolutionary papers of 1905 on special relativity deeply
clarified and extended ideas that several other physicists and math-
ematicians — Lorentz,® Poincaré, and others — had been working
on for a few years. Einstein investigated the consequences of the
fact that the laws of physics, in particular the behavior of light,
are the same in different inertial reference frames. He deduced
from that a new explanation of the Lorentz transformations, of
the relativity of time, of the equivalence of mass and energy, etc.

After 1905, Einstein began to think about extending the principle
of relativity to any kind of reference frames, frames that may be
accelerating with respect to one another, not just inertial frames.
An inertial frame is one where Newton’s laws, relating forces and
motions, have simple expressions. Or, if you prefer a more vivid
image, and you know how to juggle, it is a frame of reference in
which you can juggle with no problem — for instance in a rail-
way car moving uniformly, without jerks or accelerations of any
sort. After ten years of efforts to build a theory extending the
principle of relativity to frames with acceleration and taking into
account gravitation in a novel way, Einstein published his work
in November 1915. Unlike special relativity, which topped off the
work of many, general relativity is essentially the work of one man.

3Bernhard Riemann (1826-1866), German mathematician.

4Albert Einstein (1879-1955), German, Swiss, German again, and finally
American physicist.

5Henri Poincaré (1854-1912), French mathematician.

6Hendrik Antoon Lorentz (1853-1928), Dutch physicist.
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We shall start our study of general relativity pretty much where
FEinstein started. It was a pattern in Einstein’s thinking to start
with a really simple elementary fact, which almost a child could
understand, and deduce these incredibly far-reaching consequences.
We think that it is also the best way to teach it, to start with the
simplest things and deduce the consequences.

So we shall begin with the equivalence principle. What is the
equivalence principle? It is the principle that says that gravity
is in some sense the same thing as acceleration. We shall explain
precisely what is meant by that, and give examples of how Einstein
used it. From there, we shall ask ourselves: what kind of mathe-
matical structure must a theory have for the equivalence principle
to be true? What kind of mathematics must we use to describe it?

Most readers have probably heard that general relativity is a the-
ory not only about gravity but also about geometry. So it is
interesting to start at the beginning and ask what is it that led
Finstein to say that gravity has something to do with geometry.
What does it mean to say that “gravity equals acceleration”? You
all know that if you are in an accelerated frame of reference, say,
an elevator accelerating upward or downward, you feel an effective
gravitational field. Children know this because they feel it.

What follows may be overkill, but making some mathematics out
of the motion of an elevator is useful to see in a very simple exam-
ple how physicists transform a natural phenomenon into math-
ematics, and then to see how the mathematics is used to make
predictions about the phenomenon.

Before proceeding, let’s stress that the following study on an ele-
vator, and the laws of physics as perceived inside it, is simple. Yet
it is a first presentation of very important concepts. It is funda-
mental to understand it very well. Indeed, we will often refer to it.
In lectures 4 to 9, it will strongly help us understand acceleration,
gravitation, and how gravitation “warps” space-time.

So let’s imagine the Einstein thought experiment where somebody
is in an elevator; see figure 1. In later textbooks, it got promoted
to a rocket ship. But I have never been in a rocket ship, whereas
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I have been in an elevator. So I know what it feels like when it
accelerates or decelerates. Let’s say that the elevator is moving
upward with a velocity v.

2 A R
T velocity v
P
S ety 2'=0
I
L)
|
z2=0-—F—-—————- A e e e e e

Figure 1: Elevator and two reference frames.

So far the problem is one-dimensional. We are only interested in
the vertical direction. There are two reference frames: one is fixed
with respect to Earth. It uses the coordinate z. The other is fixed
with respect to the elevator. It uses the coordinate 2’. A point P
anywhere along the vertical axis has two coordinates: coordinate
z in the stationary frame, and coordinate 2’ in the elevator frame.
For instance, the floor of the elevator has coordinate z’ = 0. Its
z-coordinate is the distance L, which is obviously a function of
time. So we can write for any point P

2 =2—L(¥) (1)

We are going to be interested in the following question: if we know
the laws of physics in the frame z, what are they in the frame 2’7

One warning about this lecture: at least at the start, we are going
to ignore special relativity. This is tantamount to saying that
we are pretending that the speed of light is infinite, or that we
are talking about motions so slow that the speed of light can be
regarded as infinitely fast. You might wonder: if general relativity
is the generalization of special relativity, how did Einstein manage
to start thinking about general relativity without including special
relativity?
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The answer is that special relativity has to do with very high ve-
locities, while gravity has to do with heavy masses. There is a
range of situations where gravity is important but high velocities
are not. So Einstein started out thinking about gravity for slow
velocities, and only later combined it with special relativity to
think about the combination of fast velocities and gravity. And
that became the general theory.

Let’s see what we know for slow velocities. Suppose that 2z’ and
z are both inertial reference frames. That means, among other
things, that they are related by uniform velocity:

L(t) = vt 2)

We have chosen the coordinates such that when ¢ = 0, they line
up. At t = 0, for any point, 2z and 2’ are equal. For instance, at
t = 0 the elevator’s floor has coordinate 0 in both frames. Then
the floor starts rising, its height z equaling vt. So for any point
we can write equation (1). In view of equation (2), it becomes

2 =z—wt (3)

Notice that this is a coordinate transformation involving space
and time. For readers who are familiar with volume 3 of TTM on
special relativity, this naturally raises the question: what about
time in the reference frame of the elevator? If we are going to
forget special relativity, then we can just say that ¢’ and t are the
same thing. We don’t have to think about Lorentz transforma-
tions and their consequences. So the other half of the coordinate
transformation would be ¢’ = t.

We could also add to the stationary frame a coordinate x going
horizontally and a coordinate y jutting out of the page. Corre-
spondingly, coordinates ' and 3’ could be attached to the eleva-
tor; see figure 2. The x-coordinate will play a role in a moment
with a light beam. As long as the elevator is not sliding horizon-
tally, ' and x can be taken to be equal. Same for 3’ and y.

For the sake of clarity of the drawing in figure 2, we offset a bit the
elevator to the right of the z-axis. But think of the two vertical
axes as actually sliding on each other, and at ¢ = 0 the two origins
O and O’ coincide. Once again, the elevator moves only vertically.



1. Equivalence Principle and Tensor Analysis 7

S 4

Y

Figure 2: Elevator and two reference frames, three axes in each case.

Finally our complete coordinate transformation is
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It is a coordinate transformation of space-time coordinates. For
any point P in space-time, it expresses its coordinates in the mov-
ing reference frame of the elevator as functions of its coordinates
in the stationary frame. It is rather trivial. Only one coordinate,
namely z, is involved in an interesting way.

Let us look at a law of physics expressed in the stationary frame.
Take Newton’s law of motion F' = ma applied to an object or a
particle. The acceleration a is Z, where z is the vertical coordinate
of the particle. So we can write

F=m3 (5)

As we know, % is the second time derivative of z with respect to
time — it is called the vertical acceleration — and F' of course is
the vertical component of force. The other components we will
take to be zero. Whatever force is exerted, it is exerted verti-
cally. What could this force be due to? It could be related to
the elevator or not. There could be some charge in the elevator
pushing on the particle. Or it could just be a force due to a rope
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attached to the ceiling and to the particle that pulls on it. There
could be a field force along the vertical axis. Any kind of force
could be acting on the particle. Whatever the causes, we know
from Newton’s law that the equation of motion of the particle, ex-
pressed in the original frame of reference, is given by equation (5).

What is the equation of motion expressed in the primed frame?
This is very easy. All we have to do is figure out what the original
acceleration is in terms of the primed acceleration. What is the
primed acceleration? It is the second derivative with respect to
time of z’. Using the first equation in equations (4)

2 =z — vt

one differentiation gives

and a second one gives
2=z

The accelerations in the two frames of reference are the same.

All this should be familiar. But I want to formalize it to bring out
some points. In particular, I want to stress that we are doing a
coordinate transformation. We are asking how the laws of physics
change in going from one frame to another. What can we now
say about Newton’s law in the primed frame of reference? We
substitute 2’ for % in equation (5). As they are equal, we get

F =mz' (6)

We found that Newton’s law in the primed frame is exactly the
same as Newton’s law in the unprimed frame. That is not sur-
prising. The two frames of reference are moving with uniform
velocity relative to each other. If one of them is an inertial frame,
the other is an inertial frame. Newton taught us that the laws of
physics are the same in all inertial frames. It is sometimes called
the Galilean principle of relativity. We just formalized it.

Let’s turn to an accelerated reference frame.
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Accelerated Reference Frames

Suppose that L(t) from figure 1 is increasing in an accelerated
way. The height of the elevator’s floor is now given by
L

L(t) = =gt

; 7)

We use the letter g for the acceleration because we will discover
that the acceleration mimics a gravitational field — as we feel when
we take an elevator and it accelerates. We know from volume 1
of TTM on classical mechanics or from high school, that this is a
uniform acceleration. Indeed, if we differentiate L(t) with respect
to time, after one differentiation we get

L =gt

which means that the velocity of the elevator increases linearly
with time. After a second differentiation with respect to time,
we get
L=g

This means that the acceleration of the elevator is constant. The
elevator is uniformly accelerated upward. The equations connect-
ing the primed and unprimed coordinates are different from equa-
tions (4). The transformation for the vertical coordinates is now

1
I a2
Z=z-39 (8)

The other equations in equations (4) don’t change:

These four equations are our new coordinate transformation to
represent the relationship between coordinates that are acceler-
ated relative to each other.

We will continue to assume that in the z, or unprimed, coordinate
system, the laws of physics are exactly what Newton taught us.
In other words, the stationary reference frame is inertial, and we
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have F' = mZ. But the primed frame is no longer inertial. It is
in uniform acceleration relative to the unprimed frame. Let’s ask
what the laws of physics are now in the primed frame of reference.
We have to do the operation of differentiating twice over again on
equation (8). We know the answer:

Y=%-g 9)

Ah ha! Now the primed acceleration and the unprimed accelera-
tion differ by an amount g. To write Newton’s equations in the
primed frame of reference, we multiply both sides of equation (9)
by m, the particle mass, and we replace mz by F. We get

mz' = F —mg (10)

We have arrived at what we wanted. Equation (10) looks like a
Newton equation, that is, mass times acceleration is equal to some
term. That term, F' — mg, we call the force in the primed frame
of reference. You notice, as expected, that the force in the primed
frame of reference has an extra term: the mass of the particle
times the acceleration of the elevator, with a minus sign.

What is interesting about the “fictitious force” —mg, in equa-
tion (10), is that it looks exactly like the force exerted on the
particle by gravity on the surface of the Earth or the surface of
any kind of large massive body. That is why we called the accel-
eration g. The letter g stood for gravity. It looks like a uniform
gravitational field. Let me spell out in what sense it looks like
gravity. The special feature of gravity is that gravitational forces
are proportional to mass — the same mass that appears in New-
ton’s equation of motion. We sometimes say that the gravitational
mass is the same as the inertial mass. That has deep implications.
If the equation of motion is

F =ma (11)

and the force itself is proportional to mass, then the mass cancels
in equation (11). That is a characteristic of gravitational forces:
for a small object moving in a gravitational force field, its mo-
tion doesn’t depend on its mass. An example is the motion of
the Earth about the Sun. It is independent of the mass of the
Earth. If you know where the Earth is at time ¢, and you know
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its velocity at that time, then you can predict its trajectory. You
don’t need to know what the Earth’s mass is.

Equation (10) is an example of fictitious force — if you want to
call it that — mimicking the effect of gravity. Most people before
Einstein considered this largely an accident. They certainly knew
that the effect of acceleration mimics the effect of gravity, but they
didn’t pay much attention to it. It was Einstein who said: look,
this is a deep principle of nature that gravitational forces cannot
be distinguished from the effect of an accelerated reference frame.

If you are in an elevator without windows and you feel that your
body has some weight, you cannot say whether the elevator, with
you inside, is resting on the surface of a planet or, far away from
any massive body in the universe, some impish devil is accelerat-
ing your elevator. That is the equivalence principle. It extends
the relativity principle, which said you can juggle in the same way
at rest or in a railway car in uniform motion. With a simple ex-
ample, we have equated accelerated motion and gravity. We have
begun to explain what is meant by the sentence: “gravity is in
some sense the same thing as acceleration.”

We have to discuss this result a bit, though. Do we really believe
it totally or does it have to be qualified? Before we do that, let’s
draw some pictures of what these various coordinate transforma-
tions look like.

Curvilinear Coordinate Transformations

Let’s first consider the case where L(t) is proportional to t. That
is when we have
2=z —wt

In figure 3, every point — also called event — in space-time has a
pair of coordinates z and t in the stationary frame and also a pair
of coordinates z’ and t’ in the elevator frame. Of course, t' =t
and we left out the two other spatial coordinates x and y, which
don’t change between the stationary frame and the elevator. We
represented the time trajectories of fixed z with dotted lines and
of fixed 2’ with solid lines.
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A fundamental idea to grasp is that events in space-time exist irre-
spective of their coordinates, just as points in space don’t depend
on the map we use. Coordinates are just some sort of convenient
tags. We can use whichever we like. We'll stress it again after we
have looked at figures 3 and 4.

i A 2'=0 2'=1 2'=2

2

2=0 z2z=1 z2=2 2z=3
Figure 3: Linear coordinate transformation. The coordinates (2, t)
are represented in the basic coordinates (z, t). An event is a point on
the page. It has one set of coordinates in the (z, t) frame and another
set in the (2’, t') frame. Here the transformation is simple and linear.

That is called a linear coordinate transformation between the two
frames of reference. Straight lines go to straight lines, not sur-
prisingly since Newton tells us that free particles move in straight
lines in an inertial frame of reference. What is a straight line
in one frame had therefore better be a straight line in the other
frame. Not only do free particles move in straight lines in space,
when we add x and y, but their trajectories are straight lines in
space-time — straight in space and with uniform velocity.

Let’s do the same thing for the accelerated coordinate system. The
transformation equation is now equation (8) linking 2z’ and z. The
other coordinates don’t change. Again, in figure 4, every point in
space-time has two pairs of coordinates (z, t) and (2, t'). The
time trajectories of fixed z, represented with dotted lines, don’t
change. But now the time trajectories of fixed 2z’ are parabolas
lying on their side. We can even represent negative times in the
past. Think of the elevator that was initially moving downward
with a negative velocity but a positive acceleration g (in other
words, slowing down). Then the elevator bounces back upward
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with the same acceleration g. Each parabola is just shifted relative
to the previous one by one unit to the right.

z2=0 z=1 z=2 z=3

i A

2'=0 2'=12'=2

Figure 4: Curvilinear coordinate transformation.

What figure 4 illustrates is, not surprisingly, that straight lines in
one frame are not straight lines in the other frame. They become
curved lines. As regards the lines of fixed ¢ or fixed ¢/, they are
of course the same horizontal straight lines in both frames. We
haven’t represented them.

We should view figure 4 as just two sets of coordinates to locate
each point in space-time. One set of coordinates has straight axes,
while the second — represented in the first frame — is curvilinear.
Its lines z’ = constant are actually curves, while its lines ¢’ = con-
stant are horizontal straight lines. So it is a curvilinear coordinate
transformation.

Let’s insist on the way to interpret and use figure 4 because it is
fundamental to understand it very well if we want to understand
the theory of relativity — special relativity and even more impor-
tantly general relativity. The page represents space-time — here,
one spatial dimension and one temporal dimension.

Points (= events) in space-time are points on the page. An event
does not have two positions on the page, i.e., in space-time. It has
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only one position on the page. But this position can be located,
mapped,‘charted”one also says, using several differentsystemsof ref-
erence. A system of reference, also called a frame of reference, is
nothing more than a complete set of “labels,” if you will, attach-
ing one label (consisting of two numbers, because our space-time
here is two-dimensional) to each point, i.e., to each event.

In a two-dimensional space, the system of reference can be geo-
metrically simple, like orthogonal Cartesian axes in the plane.
However this is not a necessity. For one thing, on Earth, which is
not a plane, the axes are not straight lines. The usual axes used
by cartographers and mariners are meridians and parallels. But
on a 2D surface, be it a plane or not, we can imagine quite fancy or
intricate curvilinear lines to serve as a frame of reference — so long
as it attaches unequivocally two numbers to each (by definition,
fixed) point. This is what figure 4 does in the space-time made of
one temporal and one spatial dimension represented on the page.
We will see many more in lecture 2.

Something Einstein understood very early is this:

There is a connection between gravity and curvilinear coordinate
transformations of space-time.

Special relativity was only about linear transformations — transfor-
mations that take uniform velocity to uniform velocity. Lorentz
transformations are of that nature. They take straight lines in
space-time to straight lines in space-time. However, if we want to
mock up gravitational fields with the effect of acceleration, we are
really talking about transformations of coordinates of space-time
that are curvilinear. That sounds extremely trivial. When Ein-
stein said it, probably every physicist knew it and thought: “Oh
yeah, no big deal.” But Einstein was very clever and very per-
sistent. He realized that if he followed very far the consequences
of this, he could then answer questions that nobody knew how to
answer.

Let’s look at a simple example of a question that Einstein an-
swered using the curved coordinates of space-time representing
acceleration, and consequently, if the two are the same, gravity.
The question is: what is the influence of gravity on light?



1. Equivalence Principle and Tensor Analysis 15

Effect of Gravity on Light

When Einstein first asked himself the question “what is the in-
fluence of gravity on light”? around 1907, most physicists would
have answered: “There is no effect of gravity on light. Light is
light. Gravity is gravity. A light wave moving near a massive
object moves in a straight line. It is a law of light that it moves
in straight lines. And there is no reason to think that gravity has
any effect on it.”

But Einstein said: “No, if this equivalence principle between accel-
eration and gravity is true, then gravity must affect light. Why?
Because acceleration affects light.” It was again one of these ar-
guments that you could explain to a clever child.

Let’s imagine that, at ¢ = 0, a flashlight (today we might use a
laser pointer) emits a pulse of light in a horizontal direction from
the left side of the elevator; see figure 5. The light then travels
across to the right side with the usual speed of light ¢. Since
the stationary frame is assumed to be an inertial frame, the light
moves in a straight line in the stationary frame.

Z A
T gt elevator
light beam
x=0
z2=0
t=0
x

Figure 5: Trajectory of a light beam in the stationary reference frame.

The equations for the light ray are

T =ct
(12)
The first of these equations just says that the light moves across
the elevator with the speed of light — no surprise here.
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The second says that in the stationary frame the trajectory of the
light beam is horizontal.

Let’s express the same equations in terms of the primed coordi-
nates. The first equation becomes

' =ct

And the second takes the more interesting form

ZI — Q t2
2
It says that as the light ray moves across the elevator, at the same
time the light ray accelerates downward — toward the floor — just

as if gravity were pulling it.

We can even eliminate ¢ from the two equations and get an equa-
tion for the curved trajectory of the light ray:
/ )
2 =—-—==z 13
202 ( )
Thus, the trajectory, in the primed frame of reference, is a parabola,
not a straight line.

But, said Einstein, if the effect of acceleration is to bend the tra-
jectory of a light ray, then so must be the effect of gravity.

Andy: Gee Lenny, that’s really simple. Is that all there is to it?

Lenny: Yup Andy, that’s all there is to it. And you can bet that a
lot of physicists were kicking themselves for not thinking of it.

To summarize, in the stationary frame, the photon trajectory (fig-
ure 5) is a straight line, while in the elevator reference frame, it
is a parabola (figure 6).

Let’s imagine three people arguing. I am in the elevator, and I
say: “Gravity is pulling the light beam down.” You are in the
stationary frame, and you say: “No, it’s just that the elevator is
accelerating upward; that makes it look like the light beam moves
on a curved trajectory.” And Finstein says: “They are the same
thing!”
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2 A
T gt elevator
x'=0
2'=0
t'=0 light beam
9'0.

Figure 6: Trajectory of a light beam in the elevator reference frame.

This proved to him that a gravitational field must bend a light
ray. As far as I know, no other physicist understood this at the
time.

In conclusion, we have learned that it is useful to think about
curvilinear coordinate transformations in space-time.

When we do think about curvilinear coordinates transformations,
the form of Newton’s laws changes. One of the things that happen
is that apparent gravitational fields materialize, which are physi-
cally indistinguishable from ordinary gravitational fields.

Well, are they really physically indistinguishable? For some pur-
poses yes, but not for all. So let’s turn now to real gravitational
fields, namely gravitational fields of gravitating objects like the
Sun or the Earth.

Tidal Forces

Figure 7 represents the Earth, or the Sun, or any massive body.
The gravitational acceleration doesn’t point vertically on the page.
It points toward the center of the body.

It is pretty obvious that there is no way that you could do a
coordinate transformation like we did in the preceding section
that would remove the effect of the gravitational field. Yet, if you
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are in a small laboratory in space and that laboratory is allowed
to simply fall toward Earth, or toward whatever massive object
you are considering, then you will think that in that laboratory
there is no gravitational field.

small laboratory

| =

I .

7 ™

I

Figure 7: Gravitational field of a massive object, and small laboratory
falling toward the object, experiencing inside itself no gravitation.

Exercise 1: If we are falling freely in a uniform gravita-
tional field, prove that we feel no gravity and that things
float around us like in the International Space Station.

But, again, there is no way globally to introduce a coordinate
transformation that is going to get rid of the fact that there is
a gravitational field pointing toward the center. For instance, a
very simple transformation similar to equations (12) might get rid
of the gravity in a small portion on one side of the Earth, but the
same transformation will increase the gravitational field on the
other side. Even more complex transformations would not solve
the problem.

One way to understand why we can’t get rid of gravity is to think
of an object that is not small compared to the gravitational field.
My favorite example is a 2000-mile man who is falling in the
Earth’s gravitational field; see figure 8. Because he is so big, differ-
ent parts of his body feel different gravitational fields. Remember
that the farther away you are, the weaker is the gravitational field.
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His head feels a weaker gravity than his feet. His feet are being
pulled harder than his head. He feels like he is being stretched,
and that stretching sensation tells him that there is a gravitating
object nearby. The sense of discomfort that he feels, due to the
nonuniform gravitational field, cannot be removed by switching to
a free-falling reference frame. Indeed, no change of mathematical
description whatsoever can change this physical phenomenon.

2000-mile
man

Figure 8: A 2000-mile man falling toward Earth.

The forces he feels are called tidal forces, because they play an
important role in the phenomenon of tides, too. They cannot
be removed by a coordinate transformation. Let’s also see what
happens if he is falling not vertically but sideways, staying per-
pendicular to a radius. In that case his head and his feet will be
at the same distance from Earth. Both will be subjected to the
same force in magnitude pointing to Earth. But since the force
directions are radial, they are not parallel. The force on his head
and the force on his feet will both have a component along his
body. A moment’s thought will convince us that the tidal forces
will compress him, his feet and head being pushed toward each
other. This sense of compression is again not something that we
can remove by a coordinate transformation. Being stretched or
shrunk, or both, by the Earth’s gravitational field — if you are big
enough — is an invariant fact.

In summary, it is not quite true that gravity is equivalent to going
to an accelerated reference frame.
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Andy: Aha! So Einstein was wrong after all.

Lenny: Well, Finstein was wrong at times, but no, Andy, this was
not one of those times. He just had to qualify his statement and
make it a bit more precise.

What Einstein really meant was that small objects, for a small
length of time, cannot tell the difference between a gravitational
field and an accelerated frame of reference.

It raises the following question: if I present you with a force field,
does there exist a coordinate transformation that will make it
vanish? For example, the force field inside the elevator, asso-
ciated with its uniform acceleration with respect to an inertial
reference frame, was just a vertical force field pointing downward
and uniform everywhere. There was a transformation canceling
it: simply use z- instead of z’-coordinates. It is a nonlinear co-
ordinate transformation. Nevertheless, it gets rid of the force field.

With other kinds of coordinate transformations, you can make
the gravitational field look more complicated, for example trans-
formations that affect also the xz-coordinate. They can make the
gravitational field bend toward the z-axis. You might simultane-
ously accelerate along the z-axis while oscillating back and forth
on the z-axis. What kind of gravitational field do you see? A
very complicated one: it has a vertical component and it has a
time-dependent oscillating component along the z-axis.

If instead of the elevator you use a merry-go-round, that is, a
carousel, and instead of the (z/, 2/, t) coordinates of the elevator,
you use polar coordinates (r, 6, t), an object that in the station-
ary frame was fixed, or had a simple motion like the light beam,
may have a weird motion in the frame moving with the merry-go-
round. You may think that you have discovered some repulsive
gravitational field phenomenon. But no matter what, the reverse
coordinate change will reveal that your apparently messy field is
only the consequence of a coordinate change. By choosing funny
coordinate transformations, you can create some pretty compli-
cated fictitious, apparent, also called effective, gravitational fields.
Nonetheless they are not genuine, in the sense that they don’t re-
sult from the presence of massive objects.
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If T give you the field everywhere, how do you determine whether
it is fictitious or genuine, i.e., whether it is just the sort of fake
gravitational field resulting from a coordinate transformation to
a frame with all kinds of accelerations with respect to a simple
inertial one, or it is a real gravitational field?

If we are talking about Newtonian gravity, there is an easy way.
You just calculate the tidal forces. You determine whether that
gravitational field will have an effect on an object that will cause
it to squeeze and stretch. If calculations are not practical, you
take an object, a mass, a crystal. You let it fall freely and see
whether there were stresses and strains on it. If the crystal is big
enough, these will be detectable phenomena. If such stresses and
strains are detected, then it is a real gravitational field as opposed
to only a fictitious one.

On the other hand, if you discover that the gravitational field
has no such effect, that any object, wherever it is located and let
freely to move, experiences no tidal force — in other words, that
the field has no tendency to distort a free-falling system — then
it is a field that can be eliminated by a coordinate transformation.

Finstein asked himself the question: what kind of mathematics
goes into trying to answer the question of whether a field is a
genuine gravitational one or not?

Non-Euclidean Geometry

After his work on special relativity, and after learning of the math-
ematical structure in which Minkowski” had recast it, Einstein
knew that special relativity had a geometry associated with it. So
let’s take a brief rest from gravity to remind ourselves of this im-
portant idea in special relativity. Special relativity was the main
subject of the third volume of TTM. Here, however, the only thing
we are going to use about special relativity is that space-time has
a geometry.

"Hermann Minkowski (1864-1909), Polish-German mathematician and
theoretical physicist.
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In the Minkowski geometry of special relativity, there exists a
kind of distance between two points, that is, between two events
in space-time; see figure 9.

t A

Q

v

AX = (At, Ax, Ay, Az)

Figure 9: Minkowski geometry: a 4-vector going from P to Q.

The distance between P and @ is not the usual Euclidean distance
that we could be tempted to think of. It is defined as follows. Let’s
call AX the 4-vector going from P to Q. To the pair of points P
and ) we assign a quantity denoted A7, defined by

AT? = At? — Ax? — Ay? — A2

Notice that A7 does not satisfy the usual properties of a distance.
In particular, A7? can be positive or negative; and it can be zero
for two events that are not identical. The reader is referred to
volume 3 of TTM for details. Here we only give a brief refresher.

The quantity At is called the proper time between P and Q. It is
an invariant under Lorentz transformations. That is why it qual-
ifies as a sort of distance, just as in three-dimensional (3D) Eu-
clidean space the distance between two points, Az? 4+ Ay? + Az?,
is invariant under isometries.

We also define a quantity As by
As? = —At? + Az? + Ay? + A2

We call As the proper distance between P and Q). Of course, At
and As are not two different concepts. They are the same — just
differing by an imaginary factor i. They are just two ways to talk
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about the Minkowski “distance” between P and (). Depending on
which physicist is writing the equations, they will rather use At
or As as the distance between P and Q.

Einstein knew about this non-Euclidean geometry of special rela-
tivity. In his work to include gravity, and to investigate the con-
sequences of the equivalence principle, he also realized that the
question we asked at the end of the previous section — are there
coordinate transformations that can remove the effect of forces? —
was very similar to a certain mathematics problem that had been
studied at great length by Riemann. It is the question of deciding
whether a geometry is flat or not.

Riemannian Geometry

What is a flat geometry? Intuitively, it is the following idea: the
geometry of a page is flat. The geometry of the surface of a sphere
or a section of a sphere is not flat. The intrinsic geometry of the
page remains flat even if we furl the page like in figure 10. We
will expound mathematically on the idea in a moment.

page flat page furled

Figure 10: The intrinsic geometry of a page remains flat.

For now, let’s just say that the intrinsic geometry of a surface is
the geometry that a two-dimensional bug roaming on it, equipped
with tiny surveying tools, would see if it were trying to establish
an ordnance survey map of the surface.

If the bug worked carefully, it might see hills and valleys, bumps
and troughs, if there were any, but it would not notice that the
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page is furled. We see it because for us the page is embedded in
the 3D Euclidean space we live in. By unfurling the page, we can
make its flatness obvious again.

Einstein realized that there was a great deal of similarity in the two
questions of whether a geometry is non-flat and whether a space-
time has a real gravitational field in it. Riemann had studied the
first question. But Riemann had never dreamt about geometries
that have a minus sign in the definition of the square of the dis-
tance. He was thinking about geometries that were non-Euclidean
but were similar to Euclidean geometry — not Minkowski geometry.

Let’s start with the mathematics of Riemannian geometry, that
is, of spaces where the distance between two points may not be
the Euclidean distance, but in which the square of the distance is

always positive.®
X2 A
/o

XS

Figure 11: Small displacement between two points in a space.

We look at two points in a space; see figure 11. In our example
there are three dimensions, therefore three axes, X!, X2, and X3.
There could be more. Thus a point has three coordinates, which
we can write as X™, where m is understood to run from 1 to 3
or to whatever number of axes there is. And a little shift between
one point and another nearby has three components, which can
be denoted AX™ or, if it is to become an infinitesimal, dX™.

8In mathematics, they are called positive definite distances.



1. Equivalence Principle and Tensor Analysis 25

If this space has the usual Euclidean geometry, the square of the
length of dX™ is given by Pythagoras theorem

dS? = (dX')? + (dX?)* + (dX3)* + ... (14)

If we are in three dimensions, then there are three terms in the
sum. If we are in two dimensions, there are two terms. If the space
is 26-dimensional, there are 26 of them and so forth. That is the
formula for Euclidean distance between two points in Euclidean
space.

For simplicity and ease of visualization, let’s focus on a two-
dimensional space. It can be the ordinary plane, or it can be
a two-dimensional surface that we may visualize embedded in 3D
Euclidean space, as in figure 12.

Figure 12: Two-dimensional manifold (i.e., 2D surface) and its curvi-
linear coordinates viewed embedded in ordinary 3D euclidean space.

There is nothing special about two dimensions for such a surface,
except that it is easy to visualize. Mathematicians think of “sur-
faces” even when they have more dimensions. Usually they don’t
call them surfaces but manifolds or sometimes varieties.

Gauss had already understood that on curved surfaces the formula
for the distance between two points was more complicated in gen-
eral than equation (14). Indeed, we must not be confused by the
fact that in figure 12 the surface is shown embedded in the usual
three-dimensional Euclidean space. This is just for convenience
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